avatar

目录
堆排序总结

堆的定义

堆是一种数据结构,一种叫做完全二叉树的数据结构。

堆的性质

这里我们用到两种堆,其实也算是一种。

大顶堆:每个节点的值都大于或者等于它的左右子节点的值。

小顶堆:每个节点的值都小于或者等于它的左右子节点的值。

把这种逻辑结构映射到数组中 ,数组arr逻辑上就是一个堆。

从这里我们可以得出以下性质

对于大顶堆:arr[i] >= arr[2i + 1] && arr[i] >= arr[2i + 2]

对于小顶堆:arr[i] <= arr[2i + 1] && arr[i] <= arr[2i + 2]

堆排序的基本思想

1、将要排序的序列构造成一个大顶堆,根据大顶堆的性质,当前堆的根节点(堆顶)就是序列中最大的元素;

2、将堆顶元素和最后一个元素交换,然后将剩下的节点重新构造成一个大顶堆;
3、重复步骤2,如此反复,从第一次构建大顶堆开始,每一次构建,我们都能获得一个序列的最大值,然后把它放到大顶堆的尾部。最后,就得到一个有序的序列了。

那么,该如何知道最后一个非叶子节点的位置,也就是索引值?

对于一个完全二叉树,在填满的情况下(非叶子节点都有两个子节点),每一层的元素个数是上一层的二倍,根节点数量是1,所以最后一层的节点数量,一定是之前所有层节点总数+1,所以,我们能找到最后一层的第一个节点的索引,即节点总数/2(根节点索引为0),这也就是第一个叶子节点,所以第一个非叶子节点的索引就是第一个叶子结点的索引-1。那么对于填不满的二叉树呢?这个计算方式仍然适用,当我们从上往下,从左往右填充二叉树的过程中,第一个叶子节点,一定是序列长度/2,所以第一个非叶子节点的索引就是arr.length / 2 -1。

现在找到了最后一个非叶子节点,即元素值为2的节点,比较它的左右节点的值,是否比他大,如果大就换位置。这里因为1<2,所以,不需要任何操作,继续比较下一个,即元素值为8的节点,它的左节点值为9比它本身大,所以需要交换

java代码实现

java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import java.util.Arrays;

public class HeapSort {

public static void main(String[] args) {
int[] arr = {8, 1, 6, 2, 5, 3, 7, 4};
heapSort(arr);
System.out.println(Arrays.toString(arr));
//[1, 2, 3, 4, 5, 6, 7, 8]
}

public static void heapSort(int[] arr) {
if (arr == null || arr.length == 0) {
return;
}
int len = arr.length;
// 构建大顶堆,这里其实就是把待排序序列,变成一个大顶堆结构的数组
buildMaxHeap(arr, len);

// 交换堆顶和当前末尾的节点,重置大顶堆
for (int i = len - 1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0, len);
}
}

private static void buildMaxHeap(int[] arr, int len) {
// 从最后一个非叶节点开始向前遍历,调整节点性质,使之成为大顶堆
for (int i = (int) Math.floor(len / 2) - 1; i >= 0; i--) {
heapify(arr, i, len);
}
}

private static void heapify(int[] arr, int i, int len) {
// 先根据堆性质,找出它左右节点的索引
int left = 2 * i + 1;
int right = 2 * i + 2;
// 默认当前节点(父节点)是最大值。
int largestIndex = i;
if (left < len && arr[left] > arr[largestIndex]) {
// 如果有左节点,并且左节点的值更大,更新最大值的索引
largestIndex = left;
}
if (right < len && arr[right] > arr[largestIndex]) {
// 如果有右节点,并且右节点的值更大,更新最大值的索引
largestIndex = right;
}

if (largestIndex != i) {
// 如果最大值不是当前非叶子节点的值,那么就把当前节点和最大值的子节点值互换
swap(arr, i, largestIndex);
// 因为互换之后,子节点的值变了,如果该子节点也有自己的子节点,仍需要再次调整。
heapify(arr, largestIndex, len);
}
}

private static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}

复杂度

堆排序是一种选择排序,整体主要由构建初始堆+交换堆顶元素和末尾元素并重建堆两部分组成。其中构建初始堆经推导复杂度为O(n),在交换并重建堆的过程中,需交换n-1次,而重建堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)…1]逐步递减,近似为nlogn。所以堆排序时间复杂度一般认为就是O(nlogn)级。

最好和最坏的情况时间复杂度都是O(nlogn),空间复杂度O(1)。

文章作者: Yang4
文章链接: https://masteryang4.github.io/2020/08/09/%E5%A0%86%E6%8E%92%E5%BA%8F%E6%80%BB%E7%BB%93/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 MasterYangBlog
打赏
  • 微信
    微信
  • 支付宝
    支付宝

评论